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Abstract. We model learning in a continuous-time Brownian setting where there is prior
ambiguity. The associated model of preference values robustness and is time-consistent. It
is applied to study optimal learning when the choice between actions can be postponed, at
a per-unit-time cost, in order to observe a signal that provides information about an
unknown parameter. The corresponding optimal stopping problem is solved in closed
form,with a focus on two specific settings: Ellsberg’s two-urn thought experiment expanded
to allow learning before the choice of bets, and a robust version of the classical problem of
sequential testing of two simple hypotheses about the unknown drift of a Wiener process.
In both cases, the link between robustness and the demand for learning is studied.
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1. Introduction
We consider a decision maker (DM) choosing be-
tween three actions whose payoffs are uncertain be-
cause they depend on both exogenous randomness
and on an unknown parameter θ, θ � θ0, or θ1. She
can postpone the choice of action so as to learn aboutθ
by observing the realization of a signal modeled by
a Brownian motion with drift. Because of a per-unit-
time cost of sampling, which can be material or cog-
nitive, she faces an optimal stopping problem. A key
feature is that the DM does not have sufficient in-
formation to arrive at a single prior about θ—that is,
there is ambiguity about θ. Therefore, prior beliefs
are represented by a nonsingleton set of probability
measures, and DM seeks to make robust choices of
both stopping time and action by solving a maxmin
problem. In addition, she is forward-looking and
dynamically consistent as in the continuous-time ver-
sion of maxmin utility given by Chen and Epstein
(2002). One contribution herein is to extend the lat-
ter model to accommodate learning. As a result, we
capture robustness to ambiguity (or model uncer-
tainty), learning, and time-consistency. The other
contribution is to investigate optimal learning in the
above setting, with particular focus on two spe-
cial cases that extend classical models. The correspond-
ing optimal stopping problems are solved explicitly,

and the effects of ambiguity on optimal learning
are determined.
The first specific context begins with Ellsberg’s

(1961) metaphorical thought experiment: There are
two urns, each containing balls that are either red or blue,
where the “known” or risky urn contains an equal number
of red and blue balls, while no information is provided
about the proportion of red balls in the “unknown” or
ambiguous urn. The DM must choose between betting
on the color drawn from the risky urn or from the
ambiguous urn. The intuitive behavior highlighted
by Ellsberg is the choice to bet on the draw from the
risky urn no matter the color, a behavior that is
paradoxical for subjective expected utility theory, or,
indeed, for anymodel inwhich beliefs are represented
by a single probability measure. Ellsberg’s paradox is
often taken as a normative critique of the Bayesian
model and of the view that the single prior repre-
sentation of beliefs is implied by rationality (e.g.,
Gilboa 2009, 2015; and Gilboa et al. 2012). Here, we
add to the thought experiment by including a pos-
sibility to learn. Specifically, we allow the DM to
postpone her choice so that she can observe re-
alizations of a diffusion process whose drift is equal to
the proportion of red in the ambiguous urn. Under
specific parametric restrictions, we completely de-
scribe the optimal joint learning and betting strategy.
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In particular, we show that it can be optimal to reject
learning completely, and, if some learning is optimal, then
it is never optimal to bet on the risky urn after stopping.
The rationality of no learning suggests that one needs
to reexamine and qualify the common presumption
that ambiguitywould fade away, or at least diminish, in
the presence of learning opportunities (Marinacci 2002).
It can also explain experimental findings (Trautman
and Zeckhauser 2013) that some subjects neglect op-
portunities to learn about an ambiguous urn, even at no
visible (material) cost. In addition, our model is sug-
gestive of laboratory experiments that could provide
further evidence on the connection between ambiguity
and the demand for learning.

The second application is to the classical problem
of sequential testing of two simple hypotheses about the
unknown drift of a Wiener process. The seminal pa-
pers, both using a discrete-time framework, are Wald
(1945, 1947), who shows that the sequential proba-
bility ratio test (SPRT) provides an optimal trade-off
between type I and type II errors, and Arrow et al.
(1949), who derive SPRT from utility maximization
using dynamic programming arguments. More re-
cently, Peskir and Shiryaev (2006, chapter 6) employ a
Bayesian subjectivist approach and derive SPRT as
the solution to a continuous-time optimal stopping
problem. We extend the latter analysis to accommo-
date situations where the DM, a statistician/analyst,
does not have sufficient information to justify reliance
on a single prior. We show that it is optimal to stop if
every ”compatible” Bayesian (one whose prior is an
element of the set of priors used by the robustness-
seeking DM) would choose to do so. But the corre-
sponding statement for ”continue” is false: It may be
optimal to stop under robustness, even given a realized
sample atwhich all compatible Bayesianswould choose
to continue. In this sense, “sensitivity analysis” over-
states the robustness value of sampling.

Weview ourmodel as normative, a perspective that
ismost evident in the hypothesis testing context. Time-
consistency of preference has obvious prescriptive
appeal. It is important to understand that, roughly
speaking, time-consistency is the requirement that
a contingent plan (e.g., a stopping strategy) that is
optimal ex ante remain optimal conditional on every
subsequent realization, assuming there are no surprises
or unforeseen events. A possible argument against such
consistency (that is sometimes expressed in the sta-
tistics literature) is that surprises are inevitable, and,
thus, any prescription should take that into account
rather than excluding their possibility. We would
agree that a sophisticated decision maker would
expect that surprises may occur while (necessarily)
being unable to describe what form they could take.
However, to the best of our knowledge, there currently
does not exist a convincing model in the economics,

statistics, or psychology literatures of how such an in-
dividual should (or would) behave—that is, how the
awareness that she may be missing something in her
perception of the future should (orwould) affect current
behavior. That leaves time-consistency as a sensible
guiding principle with the understanding that reop-
timization can (and should) occur if there is a surprise.
A brief review of other relevant literature concludes

this introduction. The classical Bayesian model of
sequential decision making, including, in particular,
applications to inference and experimentation, are dis-
cussed in Howard (1970) and the references therein.
The maxmin model of ambiguity-averse prefer-
ence is axiomatized in a static setting in Gilboa and
Schmeidler (1989) (which owes an intellectual debt
to the Arrow and Hurwicz (1972) model of decision
making under ignorance) and in amultiperiod discrete-
time framework in Epstein and Schneider (2003),
where time-consistency is one of the key axioms.
Optimal stopping problems have been studied in the
absence of time-consistency. It is well-known that
modeling a concern with ambiguity and robust de-
cision making leads to “nonlinear” objective func-
tions, which, in a dynamic setting and in the absence
of commitment, can lead to time-inconsistency issues
(Peskir 2017). A similar issue arises also in a risk
context where there is a known objective probabil-
ity law, but where preference does not conform to
von Neumann-Morgenstern’s expected utility theory
(Ebert and Strack 2018, Huang et al. 2020). Such
models are problematic in normative contexts. It is
not clear why one would ever prescribe to a decision
maker (who is unable or unwilling to commit) that she
should adopt a criterion function that would imply
time-inconsistent plans and that she should then re-
solve these inconsistencies by behaving strategically
against her future selves (as is commonly assumed).
The recursive maxmin model has been used in mac-
roeconomics and finance (e.g., Epstein and Schneider
2010) and also in robust multistage stochastic optimi-
zation (e.g., Shapiro 2016 and the references therein,
including to the closely related literature on condi-
tional risk measures). Shapiro focuses on a property
of sets of measures, called rectangularity, following
Epstein and Schneider (2003), that underlies recur-
sivity of utility and time-consistency. Most of the
existing literature deals with a discrete-time setting.
The theoretical literature on learning under ambi-
guity is sparse and limited to passive learning (e.g.,
Epstein and Schneider 2007, 2008). With regard to
hypothesis testing, this paper adds to the literature on
robust Bayesian statistics (Berger 1984, 1985, 1994;
Rios-Insua and Ruggeri 2000), which is largely re-
stricted to a static environment. Walley (1991) goes
further and considers both a prior and a single pos-
terior stage, but not sequential hypothesis testing.
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For a frequentist approach to robust sequential testing,
see Huber (1965).

Closest to the present paper is the literature on
bandit problemswith ambiguity and robustness (Caro
and Das Gupta 2015, Li 2019). Both papers model
endogenous learning (or experimentation) by max-
min dynamically consistent agents. Their models
differ from ours in that they assume discrete time, an
exogenously given horizon, and also in the nature of
experimentation. In our model, the once-and-for-all
choice of action and resulting payoff come after
all learning has ceased, whereas in bandit problems,
action choice and flow payoffs are continuous and
intertwined with learning (for example, the cost of
experimentation is the implied reduction in current
flow payoffs). Consequently, their analyses and char-
acterizations are much different—for example, their
focus on the existence of a suitable Gittins index has
no counterpart in our model.

The paper proceeds as follows. The next section
describes the model of utility extending Chen–Epstein
to accommodate learning. Readers who are primar-
ily interested in applications can skip this relatively
technical section andmove directly to Section 3, where
the “applied” optimal stopping problems are stud-
ied. The (more) general optimal stopping problem is
solved in Section 4 (Theorem 4), thereby providing a
unifying perspective on the two applications and some
indication of the robustness of the results therein. Proofs
are contained in the e-companion to this paper.

2. Recursive Utility with Learning
For background regarding time-consistency in the
maxmin framework, consider first the following in-
formal outline that anticipates the specific setting
of this paper. DM faces uncertainty about a payoff-
relevant state space Ω due to uncertainty about the
value of a parameter θ ∈ Θ. Each θ determines a
unique probability law on Ω, but there is prior am-
biguity about the parameter that is represented by a
nonsingleton set}0 of priors on Θ. As time proceeds,
the DM learns about the parameter through obser-
vation of a signal whose increments are independent
and identically distributed (i.i.d.) conditional on θ. At
issue is how to model beliefs about Ω—that is, the
set30 of predictive priors. (Throughout, we adopt the
common practice of distinguishing terminologically
between beliefs about the state space, referred to
as predictive priors, and beliefs about parameters,
which are referred to as priors.) A seemingly natural
approach is to take30 to be the set of all measures that
can be obtained by combining some prior μ0 in }0
with the given conditionally i.i.d. likelihood. Learn-
ing is modeled through the set of posteriors }t at t
obtained via prior-by-prior Bayesian updating of }0
and a corresponding set 3t of predictive posteriors is

obtained as above. Finally, at each t ≥ 0, 3t guides
choice according to the maxmin model. The point,
however, is that time-consistency is violated: In
general, ex ante optimal plans do not remain optimal
according to updated beliefs. The reason is straight-
forward. Behavior at t is depends on the worst-case
posterior μt in }t, but worst cases at different nodes
need not belong to same prior μ0. This is in contrast
with the ex ante perspective expressed via 30, where
a single worst-case prior μ0 determines the entire ex
ante optimal plan. To restore dynamic consistency,
one can enlarge 30 by adding to it all measures ob-
tained by pasting together alien posteriors, leading
to a “rectangular” set that is closed with respect to
further pasting. One can think of the enlarged set as
capturing both the subjectively possible probability
laws and backward induction reasoning by the DM.
See Epstein and Schneider (2003) for further dis-

cussion and axiomatic foundations in a discrete-
time framework and Chen and Epstein (2002)—CE
below—for a continuous-time formulation that we
outline next. Then, we describe how it can be adapted
to include learning with partial information. The latter
description is given in the simplest context adequate
for the applications below. However, it should be clear
that it can be adapted more generally.
Let (Ω,&∞,P0) be a probability space and W �

(Wt)0≤t<∞ a one-dimensional Brownianmotion, which
generates the filtration & � {&t}t≥0, with &t ↗ &∞. (All
probability spaces are taken to be complete, and all
related filtrations are augmented in the usual sense.)
The measure P0 is a reference measure whose role is
only to define null events. CE define a set of predictive
priors 30 on (Ω,&∞) through specification of their
densities with respect to P0. To do so, they take as an
additional primitive a (suitably adapted) set-valued
process Ξt( ). (Technical restrictions are that Ξt : Ω,
K⊂Rd for some compact set K independent of t, 0∈
Ξt ω( ) dt⊗dP0 a.s., and that each Ξt is convex- and
compact-valued.) Define the associated set of real-
valued processes by

Ξ � {η � (ηt)|ηt(ω) ∈ Ξt(ω) dt ⊗ dP0 a.s.}.
Then, each η ∈ Ξ defines a probability measure on &∞,
denoted Pη, that is equivalent to P0 on each &t, and is
given by

dPη

dP0
|&t

� exp{−
∫ t

0
η2s ds −

∫ t

0
ηsdWs} for all t.

Accordingly, each ηt(ω) ∈ Ξt(ω) can be thought of
roughly as defining conditional beliefs about &t+dt,
and Ξt ω( ) is called the set of density generators at t, ω( ).
By the Girsanov Theorem,

dWη
t � ηtdt + dWt , (1)
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is a Brownian motion under Pη, which, thus, can
be understood as an alternative hypothesis about
the drift of the driving process W (the drift is 0 un-
der P0). Finally,

30 ≡ Pη : η ∈ Ξ
{ }

. (2)

(The “pasting” referred to above is accomplished
through the fact that Ξ is constructed by taking all
selections from the Ξts.)

The set 30 is used to define a time 0 utility function
on a suitable set of random payoffs denominated in
utils. In order to model in the sequel the choice of how
long to learn (or sample),we consider a set of stopping
times τ—that is, each τ is an adapted R+ -valued and
{&t}-adapted random variable defined on Ω—that is,
{ω : τ ω( ) > t} ∈ &t for every t. For each such τ, utility is
defined on the set L(τ) of real-valued random vari-
ables given by

L(τ)� ξ|ξ is &τ-measurable and sup
Q∈30

EQ|ξ| < ∞
{ }

.

The time 0 utility of any ξ ∈ L(τ) is given by

U0 ξ( ) � inf
Q∈30

EQξ � −sup
Q∈30

EQ[−ξ]. (3)

It is natural to consider also conditional utilities at
each t, ω( ), where

Ut ξ( ) � ess inf
Q∈30

EQ[ξ|&t]. (4)

In words, Ut ξ( ) is the utility of ξ at time t conditional
on the information available then and given the state ω
(the dependence of Ut ξ( ) on ω is suppressed nota-
tionally). The special construction of 30 delivers the
following counterpart of the law of total probability
(or law of iterated expectations): For each ξ, and
0 ≤ t < t′,

Ut ξ( ) � ess inf
Q∈30

EQ Ut′ ξ( )|&t[ ]. (5)

This recursivity ultimately delivers the time-consistency
of optimal choices.

The components P0,W, Ξt( ), and {&t} are primitives
in CE. Next, we specify them in terms of the deeper
primitives of a model that includes learning about an
unknown parameter θ ∈ Θ ⊂ R.

Specifically, begin with a measurable space Ω,^( ),
a filtration {^t}, ^t ↗ ^∞ ⊂ ^, and a collection {Pμ :
μ ∈ }0} of pairwise equivalent probability measures
on Ω,^( ). Although θ is an unknown deterministic
parameter, formathematical precision, we view θ as a
random variable on Ω,^( ). Further, for each μ ∈ }0,
Pμ induces thedistributionμ forθviaμ(A) � Pμ({θ ∈ A})
for all Borel measurable A ⊂ Θ. Accordingly, }0 can
be viewed as a set of priors onΘ, and its nonsingleton

nature indicates ambiguity about θ. There is also a
standard Brownian motion B � (Bt), with generated
filtration {^B

t }, such that B is independent of θ under
each Pμ. B is the Brownian motion driving the signals
process Z � (Zt) according to

Zt �
∫ t

0
θds +

∫ t

0
σdBs � θt + σBt, (6)

where σ is a known positive constant. Because only
realizations of Zt are observable, take {&t} to be the
filtration generated byZ. Assuming knowledge of the
signal structure, Bayesian updating of μ ∈ }0 gives
theposteriorμt at time t. Thus, prior-by-prior Bayesian
updating leads to the set-valued process (}t) of pos-
teriors on θ.
Proceed to specify the other CE components P0, W

and Ξt( ).
Step 1. Take μ ∈ }0. By standard filtering theory

(Liptser and Shiryaev 1977, theorem 8.3), if we re-
place the unknown parameter θ by the estimate θ̂μ

t �∫
θdμt, then we can rewrite (6) in the form

dZt � θ̂
μ
t Zt( )dt + σ dBt + θ − θ̂

μ
t Zt( )
σ

dt
( )

� θ̂
μ
t Zt( )dt + σdB̃μ

t ,

(7)

where the innovation process (B̃μ
t ) is a standard

{&t}-adapted Brownian motion on (Ω,&∞,Pμ). Thus,
(B̃μ

t ) takes the same role as (Wη
t ) in CE (see (1) above).

Rewrite (7) as

dB̃μ
t � − 1

σ
θ̂
μ
t Zt( )dt + 1

σ
dZt,

which suggests that Zt/σ( ) (respectively (resp.),
(−θ̂μ

t Zt( )/σ)) can be chosen as the Brownian motion
(Wt) (resp., the drift (ηt)) in (1).
Step 2. Find a reference probability measure P0

on (Ω,&∞) under which Zt/σ( ) is a {&t}-adapted
Brownian motion on (Ω,&∞). Fix μ ∈ }0 and define
P0 by:

dP0

dPμ
|&t

� exp − 1
2σ2

∫ t

0
θ̂
μ
s Zs( )

( )
2ds − 1

σ

∫ t

0
θ̂
μ
s Zs( )dB̃μ

s

{ }
� exp

1
2σ2

∫ t

0
θ̂
μ
s Zs( )

( )
2ds − 1

σ2

∫ t

0
θ̂
μ
s Zs( )dZs

{ }
.

By Girsanov’s Theorem, Zt/σ( ) is a {&t}-adapted
Brownian motion under P0.
Step 3. Viewing P0 as a reference measure, perturb

it. For each μ ∈ }0, define Pμ
0 on (Ω,&∞) by

dPμ
0

dP0
|&t

� exp − 1
2σ2

∫ t

0
θ̂
μ
s Zs( )( )2ds{

+ 1
σ2

∫ t

0
θ̂
μ
s Zs( )dZs

}
.
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By Girsanov, dB̃μ
t � − 1

σ θ̂
μ
t Zt( )dt + 1

σ dZt is a Brownian
motion under Pμ

0 .
In general, Pμ �� Pμ

0 . However, they induce the iden-
tical distribution for Z. This is because (B̃μ

t ) is a
{&t}-adapted Brownian motion under both Pμ and Pμ

0 .
Therefore, by the uniqueness of weak solutions to
stochastic differential equations (SDEs), the solution
Zt of (7) on (Ω,^∞,Pμ) and the solution Z′

t of (7) on(Ω,&∞,P
μ
0 ) have identical distributions. (Argue as in

Oksendal (2005, example 8.6.9).) Given that only the
distribution of signals matters in our model, there is
no reason to distinguish between the two probability
measures. Thus, we apply CE to the following compo-
nents: W and P0 defined in Step 2, and Ξt given by

Ξt � −θ̂μ
t /σ : μ ∈ }0, θ̂

μ
t �

∫
θdμt

{ }
. (8)

In summary, taking these specifications for P0, W, Ξt( ),
and {&t} in the CE model yields a set 30 of predic-
tive priors, and a corresponding utility function,
that capture prior ambiguity about the parameter θ
(through }0), learning as signals are realized (through
updating to the set of posteriors }t), and robust
(maxmin) and time-consistent decision making (be-
cause of (5)). We use this model in the optimal stop-
ping problems that follow. The only remaining primitive
is }0, which is specified to suit the particular setting
of interest.

As indicated, the key technical step in our extension
of CE is in adopting the weak formulation rather than
their strong formulation. For readers who may be un-
familiar with this distinction, we suggest Oksendal
(2005, section 5.3) for discussion of weak versus
strong solutions of SDEs and Zhang (2017, chapter 9).
The latter exposits both the technical advantages of
the weak formulation and its economic rationale,
notably in models with imperfect information (such
as here, where given (6), Z is observed but not B) or
asymmetric information (such as in principal-agent
models). In our context, the weak formulation is
suggested if one views B not as modeling a physical
noise or shock, but rather as a way to specify that the
distribution of Zt − θt( )/σ is standard normal (condi-
tional on θ).

Remark 1. We add a few remarks about related liter-
ature. Cheng and Riedel (2013) describe how CE can
be applied to study optimal stopping, but they do not
discuss learning. CE suggest (but do not prove) that
their framework can accommodate passive learning.
We are aware of two papers that explicitly address
passive learning in the CE framework—Choi (2016)
and Miao (2009)—whose models are much different
than the above. Two core distinguishing features of
Choi’s model are: (i) His set of priors }0 consists ex-
clusively of Dirac, or dogmatic, measures, which

naturally do not admit Bayesian updating; and (ii) am-
biguity affects learning primarily because there are
multiple likelihoods, reflecting the assumption that the
signal structure is not well understood. See the related
discrete-timework of Epstein and Schneider (2007, 2008)
for the distinction between prior ambiguity about an
unknown parameter, as in our model, and ambiguity
about the signal structure (or the likelihood function, as
in Choi). Our focus on prior ambiguity derives from our
objective—trying to understand the connection between
ambiguity and (optimal) learning in the situation most
favorable for learning, which is that the signal structure
is well understood.

Miao focuses on partial information and filtering in
the presence of ambiguity. In his approach, application
of CE is immediate, and partial information does not
make much difference for the analysis. He applies
classical filtering for a reference model and then adds
time- and history-invariant ambiguity to the updated
reference measure. There is no interaction between
filtering and ambiguity; for example, the dependence
of estimates on the prior μ as in (8) is absent.

3. Optimal Learning
3.1. The Framework and General Problem
The DM must choose an action from the set A �
{a0, a1, a2}. Payoffs are uncertain and depend on an
unknown parameter θ. Before choosing an action, the
DM can learn about θ by observing realizations of the
signal process Z given by (6), where σ is a known
positive constant. There is a constant per-unit-time
cost c > 0 of learning. (The underlying state space Ω,
the filtration {&t} generated by Z, and other notation
are as in Section 2. Unless specified otherwise, all
processes below are taken to be {&t}-adapted even
where not stated explicitly.)
If the DM stops learning at t, then her conditional

expected payoff (in utils) is Xt; think of Xt as the in-
direct utility she can attain by choosing optimally
from A. The DM is forward-looking and has time 0
beliefs about future signals given by the set 30 ⊂
Δ Ω,&∞( )described in the previous section. Her choice
of when to stop is described by a stopping time (or
strategy) τ, which is restricted to be uniformly inte-
grable (supQ∈30

EQτ < ∞); the set of all stopping strat-
egies is Γ. As a maxmin agent, she chooses an opti-
mal stopping strategy τ∗ by solving

max
τ∈Γ min

P∈30

EP Xτ − cτ( ). (9)

It remains to specify }0, which determines 30 as
described in Section 2, and Xt.
We assume that all priors μ in }0 have binary

support Θ � {θ0, θ1}, θ0 < θ1. Specifically, let

}0 � {μm � (1 −m)δθ0 +mδθ1 : m0 ≤ m ≤ m0}. (10)
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Therefore, }0 can be identified with the probability
interval m0,m0[ ] for the larger parameter value θ1.
Let 0 < m0 < m0 < 1.

Bayesian updating of each prior yields the fol-
lowing set of posteriors at t,

}t � {(1 −m)δθ0 +mδθ1 : mt ≤ m ≤ mt}, (11)

where, by Liptser and Shiryaev (1977, theorem 9.1),

mt �
m0

1−m0
ϕ(t,Zt)

1 + m0
1−m0

ϕ(t,Zt) ,mt �
m0

1−m0
ϕ(t,Zt)

1 + m0
1−m0

ϕ(t,Zt)
, (12)

and

ϕ(t, z) � exp
θ1 − θ0

σ2
z − 1

2σ2
θ2
1 − θ2

0

( )
t

{ }
. (13)

Conditional on the parameter value, payoffs are given
by u(ai, θj), where each u(ai, θj) is nonnegative. Think
of u(·, θj) as including the valuation of any risk
remaining, even if θj is known to be true—for ex-
ample, u(ai, θj) could be the expected utility of the
lottery implied by (ai, θj). Payoffs are assumed to
satisfy: For each i, j � 0, 1, i �� j,

u aj, θj
( ) � u ai, θi( ) > u aj, θi

( )
. (14)

Thus, a0 is better than a1 given θ0, and the reverse
givenθ1, and the payoff to the better action is the same
for both parameter values. The payoff to the third
action a2 does not depend on θ and can be thought of
as a default or outside option. Its payoff is not am-
biguous because incomplete confidence about θ is the
only source of ambiguity in themodel, but choice of a2
may entail risk. Adopt the notation

u2 � u a2, θ0( ) � u a2, θ1( ). (15)

It is evident that action a2 may be irrelevant if its
payoff is sufficiently low—for example, if u2 � 0. To
exclude the trivial case where a2 is always chosen,
assume that

u2 < u ai, θi( ), i � 0, 1.

Consider next payoffs conditional on time t beliefs
about θ as represented by the set of posteriors}t. The
Gilboa–Schmeidler utility of ai is minμ∈}t

∫
u ai, θ( )dμ.

Therefore, if DM chooses an optimal action at time t,
then her payoff is

Xt�max min
μ∈}t

∫
u a0, θ( )dμ,min

μ∈}t

∫
u a1, θ( )dμ,u2

{ }
.

(16)

The preceding completes specification of the opti-
mal stopping problem (9). Its solution is described in
Section 4 under two alternative additional assumptions:

Payoff symmetry u a0, θ1( ) � u a1, θ0( ); and no risky
option u2 ≤ u(ai, θj), i �� j � 0, 1
Thefirst assumption adds to the symmetry contained

in (14). Given (14), the second implies that action a2 is
(weakly) inferior to each of a0 and a1 conditional on
either parameter value. Hence, it would never be
chosen uniquely and can be ignored, leaving only two
actions. These assumptions are satisfied, respectively,
by the two special models upon which we focus:
Ellsberg’s urns (payoff symmetry) and hypothesis
testing (no risky option). We focus on these first be-
cause they extend classic models in the literature and
because they provide simply distinct insights into the
connection between ambiguity and optimal learning.

3.2. Learning and Ellsberg’s Urns
There are two urns, each containing balls that are
either red or blue: a risky urn in which the proportion
of red balls is 1

2 and an ambiguous urn in which the
color composition is unknown. Denote by θ + 1

2 the
unknown proportion of red balls. Thus, θ denotes
the bias toward red: θ > 0 indicates more red than
blue, θ < 0 indicates the opposite, and θ � 0 indicates
an equal number as in the risky urn. The DM can
choose between betting on the draw from the risky or
ambiguous urn and also on drawing red or blue. In
the absence of learning, the intuitive behavior high-
lighted by Ellsberg is to bet on the draw from the risky
urn no matter the color. Here, we consider betting
preferencewhen an ambiguity-averse decisionmaker
can defer the choice between bets until after learning
optimally about θ.
Before proceeding, we address the possible con-

cern that our model of learning—namely, the signal
structure (6)—is unnatural in the Ellsberg context,
where sampling with replacement from the ambig-
uous urn suggests itself. However, just as the Ellsberg
choice problems are understood to be metaphorical
and suggestive examples, we intend our model with
learning to be viewed in the same spirit. For example,
one can reinterpret our version of the Ellsberg set-
ting as follows. An investor must choose between
investing in a known (risky) stock or in an unknown/
unfamiliar (ambiguous) stock. If she chooses the
latter, she can go long (corresponding to betting on
red) or short (corresponding to betting on blue). Be-
fore choosing, she can observe the price Zt of the
ambiguous stock, which evolves according to (6) and
provides information about an underlying funda-
mental θ.
To resume with the formal analysis, we apply the

model described above with particular specifications
for its key primitives A, Θ, }0, and u. For A, let a2
denote a bet on the risky urn and let a1 (a0) denote the
bet on drawing red (blue) from the ambiguous urn.
(There is no need to differentiate between bets on red
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and blue for the risky urn.) Take Θ � {θ0, θ1}, where
θ0 + θ1 � 0, or, equivalently, for some 0 < α < 1

2 ,

θ0 � −α, θ1 � α. (17)

Thus, only two possible biases, of equal size, are
thought possible (the proportion of red is either 1

2 − α
or 1

2 + α). However, there is ambiguity about which
direction for the bias is more likely. This ambiguity is
modeled by }0 having the form in (10), where we
assume in addition that the probability interval for α
(the bias toward red) is such that m0 +m0 � 1, or,
equivalently, for some 0 < ε < 1,

m0 � 1 − ε

2
,m0 � 1 + ε

2
. (18)

Thus, the lowest probability for a bias toward blue
equals that for red, implying indifference at time 0
between bets on red and blue. This assumption, and
also the color symmetry in (17), are natural because
information about the ambiguous urn gives no reason
to distinguish between colors.

We are left with the two parameters α and ε. We
interpret ε as modeling ambiguity (aversion): the
probability interval 1−ε

2 , 1+ε2
[ ]

for the bias toward red
is larger if ε increases. At the extreme when ε � 0,
then }0 is the singleton according to which the two
biases are equally likely, and the DM is a Bayesian who
faces uncertainty with variance α2 about the true bias,
but no ambiguity. We interpret α as measuring the
degree of this prior uncertainty, or prior variance;
(α � 0 implies certainty that the composition of the
ambiguous urn is identical to that of the risky urn).

Finally, specify payoffs u. All bets have the same
winning and losing prizes, denominated in utils,
which can be normalized to 1 and 0, respectively.
Given the composition of the ambiguous urn, then
only risk is involved in every bet, and an expected
utility calculation yields

u a0,−α( ) � u a1, α( ) � α + 1
2
,

u a0, α( ) � u a1,−α( ) � α − 1
2
, and u2 � 1

2
. (19)

The assumptions in Section 3.1 are readily verified.
For convenience of the reader, we include the im-

plied expression for the conditional payoffXt � X(Zt):

X(Zt) �
(12 + α) − 2α

1+1−ε
1+εϕ(Zt) if Zt > σ2

2α log(1+ε1−ε)
(12 − α) + 2α

1+1+ε
1−εϕ(Zt) if Zt < − σ2

2α log(1+ε1−ε)
1
2 otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(20)

where ϕ(z) � exp(2αz/σ2). Thus, if Zt is large positive
(negative), then a bet on drawing red (blue) from the
ambiguous urn is optimal. For intermediate values,

there is not enough evidence for a bias in either di-
rection to compensate for the ambiguity, and betting
on the risky urn is optimal. This is true in particular
ex ante where Z0 � 0, consistent with the intuitive
ambiguity-averse behavior in Ellsberg’s two-urn ex-
periment without learning.
We give an explicit solution to the optimal stopping

problem (9) satisfying (17)–(19). To do so, let

l(r) � 2 log

(
r

1 − r

)
− 1
r
+ 1
1 − r

, r ∈ (0, 1), (21)

and define r̂ by

l( r̂ ) � 2α3

cσ2
. (22)

r̂ is uniquely defined thereby and 1
2 < r̂ < 1, because

l(·) is strictly increasing, l(0) � −∞, l(12) � 0, and l(1) �∞.

Theorem 1.
(i) τ∗ � 0 if and only if 1+ε

2 ≥ r̂, in which case
Xτ∗ � X0 � 1

2.
(ii) Let 1+ε

2 < r̂. Then, the optimal stopping time sat-
isfies τ∗ > 0 and is given by

τ∗ � min{t ≥ 0 : |Zt| ≥ z},
where

z � σ2

2α
log

1 + ε

1 − ε
+ log

r
1 − r

[ ]
> 0, (23)

and r, r̂ < r < 1, is the unique solution to the equation

l(r) + l
1 + ε

2

( )
� 4α3

cσ2
. (24)

Moreover, on stopping, either the bet on red is chosen (if
Zτ∗ ≥ z) or the bet on blue is chosen (if Zτ∗ ≤ −z); the bet
on the risky urn is never optimal at τ∗ > 0. Finally, if ε <
ε′ < 2̂r − 1, and if τ∗′ is the corresponding optimal stop-
ping time, then τ∗′ ≥ τ∗.
The two cases are defined by the relative magni-

tudes of ε, parametrizing ambiguity, and r̂, which
is an increasing function of α3/(cσ2); in particular,
through α, it depends positively on the payoff to
knowing the direction of the true bias. Thus, (i) con-
siders the case where ambiguity is large relative to
payoffs (and taking also sampling cost and signal
variance into account). Then, no learning is optimal,
and the bet on the risky urn is chosen immediately. In
contrast, some learning is necessarily optimal given
small ambiguity (case (ii)), including in the limiting
Bayesian model with ε � 0. Thus, it is optimal to reject
learning if and only if ambiguity, as measured by ε, is
suitably large. In case (ii), it is optimal to sample as
long as the signal Zt lies in the continuation interval
−z, z( ). Two features of this learning region stand out.
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First, when Zt hits either endpoint, learning stops
and DM bets on the ambiguous urn. Thus, the risky
urn is chosen (if and) only if it is not optimal to learn. The
second noteworthy feature is that sampling increases
with greater ambiguity, as measured by ε, thoughwhen
ε reaches 2̂r − 1, then, by (i), it is optimal to reject
any learning.

There is simple intuition for the preceding. First,
consider the effect of ambiguity (large ε) on the in-
centive to learn. The DM’s prior beliefs admit only α
and−α as the two possible values for the true bias. She
will incur the cost of learning if she believes that she
is likely to learn quickly which of these is true. She
understands that she will come to accept α (or −α)
as being true, given realization of sufficiently large
positive (negative) values for Zt. A difficulty is that
she is not sure which probability law in her set 30
describes the signal process. As a conservative de-
cision maker, she bases her decisions on the worst-
case scenario P∗ in her set. Because she is trying to
learn, the worst-case minimizes the probability of
extreme, hence revealing signal realizations, which,
informally speaking, occurs if P∗({dZt > 0} |Zt > 0) and
P∗({dZt < 0} |Zt < 0) are as small as possible. That is, if
Zt > 0, then the distribution of the increment dZt is
computed by using the posterior associated with that
prior in }0, which assigns the largest probability 1+ε

2
to the negative bias −α, whereas if Zt < 0, then the
distribution of the increment is computed by using
the posterior associated with the prior assigning the
largest probability 1+ε

2 to the positive bias α. It follows
that, from the perspective of the worst-case scenario,
the signal structure is less informative the greater ε.
Accordingly, conditional on some learning being op-
timal, then it must be with the expectation of a long
sampling period that increases in length with ε.
A second effect of an increase in ε is that it reduces the
ex ante utility of betting on the ambiguous urn and,
hence, implies that signals in an increasingly large
interval would not change betting preference. Con-
sequently, a small sample isunlikely tobeofvalue—only
long samples are useful. Together, these two effects
suggest existence of a cutoff value for ε beyond which
no amount of learning is sufficiently attractive to jus-
tify its cost. At the cutoff, here 2̂r − 1, the DM is just
indifferent between stopping and learning for an-
other instant.

There remains the following question for smaller
values of ε:Why is it never optimal to try learning for a
while and then, for some sample realizations, to stop
and bet on the risky urn? The intuition, adapted from
Fudenberg, Strack and Strzalecki (2018), is that this
feature is a consequence of the specification}0 for the
set of priors. To see why, suppose that Zt is small for
some positive t. A possible interpretation, particu-
larly for large t, is that the true bias is small and, thus,

that there is little to be gained by continuing to
sample—the DM might as well stop and bet on the
risky urn. But this reasoning is excluded when, as in
our specification, the DM is certain that the bias is ±α.
Then, signals sufficiently near 0must be noise, and the
situation is essentially the same as it was at the start.
Hence, if stopping to bet on the risky urn were op-
timal at t, it would have been optimal also at time 0.
This intuition is suggestive of the likely consequences
of generalizing the specification of }0. Suppose, for
example, that }0 is such that all its priors share a
common finite support. We conjecture that then the
predicted incompatibility of learning and betting on
the risky urn would be overturned if the zero bias
point is in the common support.
Finally, using the closed-form solution in the the-

orem,we can givemore concrete expression to the effect
of ambiguity on optimal learning. Restrict attention to
values of ε in [0, 2̂r − 1), where some learning is op-
timal, and denote by Pθ the probability distribution
of Zt( ) if θ is the true bias. Then, bywell-known results
regarding hitting times of Brownianmotionwith drift
(Borodin and Salminen 2015), themean sample length
according to Pθ is

Eθτ∗ � z/σ( )2 tanh θz/σ2( )
θz/σ2

[ ]
if θ �� 0

z/σ( )2 if θ � 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (25)

which is increasing in ε. Note also that θZτ∗ > 0 if and
only if the bet on red (blue) is chosen on stopping if
θ > 0 (θ < 0). Thus, the probability, if θ �� 0 is the true
bias, of choosing the “correct” bet on stopping is
given by

Pθ {θZτ∗ > 0}( ) � 1

1 + exp − 2|θ|
σ2 z

( ) , if θ �� 0,

which increases with ε. (To prove this equality, apply
the optional stopping theorem to the Pθ-martingale
e−2θZt/σ2 .)
The proof of Theorem 1 yields a closed-form ex-

pression for the value function associated with the op-
timal stopping problem. In particular, the value at time 0
satisfies (from EC.4 and EC.10 in the e-companion),

v0 − 1
2 �

0 if 1+ε
2 ≥ r̂

cσ2
4α2

1
r(1−r) − 4

(1+ε)(1−ε)
[ ]

if 1+ε
2 < r̂.

⎧⎪⎪⎨⎪⎪⎩ (26)

Because the payoff 1
2 is the best available without

learning, v0 − 1
2 is the value of the learning option. It is

positive for small ε < 2̂r − 1 anddeclines continuously
to 0 as ε increases to the switch point. (Note that
1+ε
2 � r̂ implies that both are equal in turn to r, and,
hence, that v0 is continuous at ε � 2̂r − 1.) This is con-
sistent with intuition given above.
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As a numerical example, let c, σ, α( ) � (0.01, 1, 18),
which gives 0.0488 as the cutoff for ε. Thus, learning
is rejected if ε � 0.05. For ε � 0.04, however, τ∗ > 0
and Eτ∗ � 0.61 under Pθ�0. Neither of the values for ε
is extreme: In the classic Ellsberg setting (with no
learning), they imply probability equivalents for the
bet on red equal to 0.4875 and 0.4900 for ε � 0.05 and
ε � 0.04, respectively.

3.3. A Robust Sequential Hypothesis Test
The DM samples the signal process Z with the ob-
jective of then choosing between the two statistical
hypotheses

H0 : θ � 0 and H1 : θ � β,

where β > 0. The novelty relative toArrow et al. (1949)
and Peskir and Shiryaev (2006) is that there is prior
ambiguity about the value of θ, and a robust decision
procedure is sought.

The following specialization of the general model is
adopted. Let Θ � {0, β}. The actions a0 and a1 are ac-
cept H0 and accept H1, respectively. A third action is
absent because there is no “outside option”—one of
the hypotheses must be chosen. (Formally, one could
include a2 and specify its payoff below to be zero, in
which case it would never be chosen.) The set of priors
}0 is as given in (10), corresponding to the proba-
bility interval m0,m0[ ] for θ � β. Finally, payoffs are
given by

u a0, 0( ) � u a1, β
( ) � a + b,

u a0, β
( ) � b, u a1, 0( ) � a,

where a, b > 0. (Payoffs in this context are usually
specified in terms of a loss function that is to be mini-
mized. The loss function L satisfying L a0, 0( ) � L a1,(
β) � 0, L(a0, β) � a, and L a1, 0( ) � b, gives an equivalent
reformulation.)

There are two differences in specification from the
Ellsberg context. First, there is no counterpart of
the risky urn when choosing between hypotheses.
Second, although symmetry between colors is nat-
ural in the Ellsberg context, symmetry between hy-
potheses is not; thus, b need not equal a, and the
probability interval m0,m0[ ] need not be symmetric
about 1

2.
The optimal stopping problem (9) admits a closed-

form solution. For perspective, consider first the spe-
cial Bayesian case (}0 � {μ}; hence, }t � {μt}, μt(β) �
mt). Denote by r̃�B < r̃RB the solutions to (33) below,
which in this context simplifies to

l(r̃RB) − l(r̃lB) � a+b
ĉ

1
r̃RB 1−r̃RB( ) − 1

r̃lB 1−r̃lB( ) � b−a
ĉ .

(27)

Then, we have the following classical result.

Theorem 2 (Shiryaev 2008, Peskir and Shiryaev 2006). In
the Bayesian case, for any prior probability m0, it is optimal
to continue at t if and only if

r̃�B < mt < r̃RB . (28)

Otherwise, it is optimal to accept H1 or H0 according as
mt ≥ r̃RB or mt ≤ r̃�B, respectively.

In the model with ambiguity, the cut-off values are
r̃� and r̃R, r̃� < r̃R, that solve the appropriate version
of (33), and we have the following generalization of
the classical result.

Theorem 3. In the model with ambiguity, it is optimal to
stop and accept H1 or H0 according as mt ≥ r̃R or mt ≤ r̃�,
respectively. Otherwise, it is optimal to continue.

In addition, if a � b, then

r̃�B < r̃� and r̃R < r̃RB . (29)

Under the assumption of payoff symmetry (a � b),
the theorem has noteworthy implications for the re-
lation between the optimal stopping strategies for
the Bayesian and the robustness-seeking DM. (We
conjecture that (29) is valid, even if a �� b, but a proof
has escaped us.) If m0 ∈ m0,m0[ ], refer to a compatible
Bayesian. The theorem implies:

1. If every compatible Bayesian stops and chooses
ai, then it is optimal also for the DM to stop and choose
ai, i � 1, 2.

2. If every compatible Bayesian continues, then it
may still be optimal for the DM to stop.
In other words, the DM should accept a unani-

mous recommendation of compatible Bayesian ex-
perts if she is to stop and choose a specific action,
but not necessarily if she is to continue. In this sense,
“sensitivity analysis” overstates the robustness value
of sampling.
The intuition is clear. Prior ambiguity leads to the

signal structure being perceived as less likely to be
informative (seen from the perspective of the worst-
case measure P∗—see the outline below of the proof of
Theorem 4), even though the signal structure itself is
not ambiguous. In contrast, there is no counterpart
given multiple Bayesian agents—each is confident in
beliefs about θ and is certain that signal increments
are conditionally i.i.d. Only the DM internalizes un-
certainty about the probability law and discounts the
benefits of learning accordingly.

Remark 2. As is made clear in Theorem 4, stopping
conditions can be stated equivalently in terms of either
the signal process (as in the Ellsberg model) or pos-
teriors (as here). In the text, we have adopted the
formulations that seemmore natural for each particular
setting. For example, the use of posteriors above fa-
cilitates comparison with the classical Bayesian result.
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Remark 3. Time-consistency in the present context is
closely related to the Stopping Rule Principle—that the
stopping rule should have no effect on what is inferred
from observed data and hence on the decision taken
after stopping (Berger 1985). It is well-known that:
(i) Conventional frequentist methods, based on ex
ante fixed sample-size significance levels, violate this
principle and permit the analyst to sample to a fore-
gone conclusion when data-dependent stopping
rules are permitted; and (ii) Bayesian posterior odds
analysis satisfies the principle. Kadane et al. (1996)
point to the law of iterated expectations as respon-
sible for excluding foregone conclusions (if the
prior is countably additive). Equation (5) is a non-
linear counterpart that we suspect plays a similar role
in our model (though details are beyond the scope of
this paper).

4. A More General Theorem
In order to condense notation, we write uij in place
of u(ai, θj), i, j � 0, 1.

Theorem 4 below describes the solution to the
optimal stopping problem in Section 3.1 assuming
either payoff symmetry (u01 � u10) or no risky option
(u2 ≤ min{u10,u01}). Payoff symmetry is satisfied in
Theorem 1, but the latter assumes more, specifically
ex ante indifference between a0 and a1 (m0 +m0 � 1)
and u2 � 1

2 (u00 + u10). Thus, it is extended below by
Theorem 4(a). The assumption of no risky option is
the crucial element in the hypothesis testing example,
and the corresponding optimal stopping problem is
isomorphic to that in Theorem 4(b).

Both mt and mt defined in (12) are increasing func-
tions of ϕ(t, zt). It follows that there exists a unique
pair of probabilities π and π and a unique (deter-
ministic) signal realization trajectory ( z̃t) satisfying,
for every t,

π � mt( z̃t), π � mt( z̃t), and
πu11 + 1 − π( )u10 � πu01 + 1 − π( )u00.

For example, z̃0 � 0, π � m0, and π � m0 if and only if
a0 and a1 are indifferent ex ante. More generally, a0
and a1 are indifferent conditional on the signal z̃t at t
and a0 (a1) is preferred at t if Zt < >( )̃zt.

Normalize the cost of learning to ĉ, ĉ � 2cσ2/
(θ1 − θ0)2.

Optimal stopping strategies will be described in
terms of several critical values that are, in turn, de-
fined by using the functions l and l̃: For all r in 0, 1( ),

l(r) � 2 log
( r
1 − r

)
− 1
r
+ 1
1 − r

l̃(r) � log
( r
1 − r

)
+ r
1 − r

.

Let (rR1 , rR2 ), (rl1, rl2), (rR, rl), and (r̃R, r̃l) solve the fol-
lowing equations, respectively:

l rR2
( )

− l rR1
( )

� u11−u10
ĉ

l̃ rR2
( )

− l̃ rR1
( )

� u2−u10
ĉ , (30)

l rl2
( )

− l rl1
( )

� − u00−u01
ĉ

l̃ rl2
( )

− l̃ rl1
( )

� u2−u00
ĉ , (31)

l rR
( )

− l π( ) � u11−u10
ĉ

l rl
( )

− l π( ) � − u00−u01
ĉ , (32)

l r̃R
( )

− l π( ) � l r̃l
( )

− l π( ) + u11−u10+u00−u01
ĉ

l̃ r̃ R
( )

− l̃ π( ) − π l r̃ R
( ) − l π( )( ) �

l̃ r̃ l
( )

− l̃ π( ) − π l r̃ l
( )

− l π( )
( )

. (33)

(The latter reduces to (32) if payoff symmetry is
satisfied.)
Define

u∗∗2 � ĉ
2

1
rl(1 − rl) −

1
π(1 − π)

[ ]
+ u00 − u01

2
. (34)

Besides the existence and uniqueness assertions, the
next lemma proves a number of properties that are
important for the optimal stopping theorem to follow.

Lemma 1. There exist unique solutions to (32) and (33),
and the solutions to the latter satisfy

r̃l < π, r̃R > π. (35)

If u2 ≥ u∗∗2 , then there exist unique solutions also to (30)
and (31), and the solutions satisfy

rl2 < rl1, r
R
1 < rR2 , π < rR, rl < π.

If payoff symmetry is also satisfied, then:

π + π � 1 � rl + rR, and (36)

rl1 ≤ π⇐⇒ rR1 ≥ π⇐⇒u2 ≥ u∗∗2 . (37)

Define

f (t, r) � θ1 + θ0

2
t + σ2

θ1 − θ0
log

1 −m0

m0

r
1 − r

( )
f (t, r) � θ1 + θ0

2
t + σ2

θ1 − θ0
log

1 −m0

m0

r
1 − r

( )
.

Then, mt f (t, r)
( )

� r � mt f (t, r)( )
, and, for any r1 and r2,

f (t, r1) ≤ z̃t ⇐⇒ r1 ≤ π

f (t, r2) ≥ z̃t ⇐⇒ r2 ≥ π.
(38)
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Finally, define three stopping times:

τ0 ≡ min t ≥ 0 : Zt ≤ f t, rl2
( ){ }

� min t ≥ 0 : mt ≤ rl2
{ }

,

τ1 ≡ min t ≥ 0 : Zt ≥ f t, rR2
( ){ }

� min t ≥ 0 : mt ≥ rR2
{ }

, and

τ2 ≡ min t ≥ 0 : f t, rl1
( )

≤ Zt ≤ f t, rR1
( ){ }

� min t ≥ 0 : mt ≥ rl1 and mt ≤ rR1
{ }

.

Theorem 4. (a) Assume payoff symmetry (u01 � u10).
(a.i) If rl1 ≤ π, then the optimal stopping time τ∗ is given

by

τ∗ � min{τi : i � 0, 1, 2}.
Moreover, if τ∗ � τi, then ai is optimal on stopping. In

particular, if there is ex ante indifference between a0 and a1
(π � m0 and π � m0), then τ∗ � 0 and a2 is chosen.

(a.ii) If rl1 > π, then

τ∗ � min t ≥ 0 : Zt ≤ f t, rl
( )

or Zt ≥ f t, rR
( ){ }

� min t ≥ 0 : mt ≤ rl or mt ≥ rR
{ }

.

Moreover, a0 is optimal on stopping if Zτ∗ ≤ f (τ∗, rl)
(equivalently, if mτ∗ ≤ rl), a1 is optimal if Zτ∗ ≥ f (τ∗, rR)
(equivalently, if mτ∗ ≥ rR), and a2 is never optimal.

(b) Assume u2 ≤ min{u10,u01}. Then,
τ∗ � min t ≥ 0 : Zt ≤ f t, r̃l

( )
or Zt ≥ f t, r̃R

( ){ }
� min t ≥ 0 : mt ≤ r̃l or mt ≥ r̃R

{ }
.

Moreover, a0 is optimal on stopping if Zτ∗ ≤ f (τ∗, r̃l)
(equivalently if mτ∗ ≤ r̃l), a1 is optimal if Zτ∗ ≥ f (τ∗, r̃R)
(equivalently if mτ∗ ≥ r̃R), and a2 is never optimal.

In (a), the distinction between the two subcases
depends on the relative magnitudes of rl1 and π.
From (31), it follows that rl1 falls as u2 increases, while π
does not depend on u2. Therefore, (a.i) applies if the
payoff u2 to the unambiguous default is sufficiently
large. The other factor leading to (a.i) is large π, equiv-
alently (by (36)) small π, which is supported by m0
large and m0 small. Thus, (a.i) is supported also by
large prior ambiguity.

In (a.i), τ∗ � 0 if either m0 ≤ rl2 (prior beliefs are
strongly biased toward θ0, and, hence, a0 is chosen
immediately), or m0 ≥ rR2 (prior beliefs are strongly
biased toward θ1 and, hence, a1 is chosen), or m0 ≥ rl1
and m0 ≤ rR1 (the worst-case probabilities of both θ0
and θ1 are both sufficiently low that neither a0 nor a1 is
attractive enough to justify the cost of sampling, and,

hence, a2 is chosen). That leaves continuation being
optimal at time 0 if and only if prior beliefs are “in-
termediate” in the sense that

either: rl2 < m0 < rl1
[ ]

and m0 < rR2 ,

or: rR1 < m0 < rR2
[ ]

and m0 > rl2
]
.

This continuation region could be empty. Because
learning is only about the payoffs to a0 and a1, the
situation at time 0 that is least favorable to learning is
where there is ex ante indifference between a0 and
a1—then, a long and, hence, costly sample would
likely be needed to modify the ex ante ranking of
actions. In this case, therefore, it is optimal to reject
learning and choose a2, as in Theorem 1. However, if,
for example, a1 is strictly preferred initially, then an
incentive to learn is that a relatively short interval of
sampling may be enough to decide between a1 and a2.
In addition, ifm0 is sufficiently large, say, near 1, then
near certainty that θ � θ1 can lead to rejection of
learning and the immediate choice of a1, rather than
of a2 as in the Ellsberg context.
In (a.ii), τ∗ � 0 if and only if m0,m0[ ] is disjoint from

(r�, rR). Notably, the default action is not chosen, re-
gardless of when sampling stops. Its payoff u2 is too
low (from (37), u2 < u∗∗2 ) compared with the expected
payoff of choosing a0 or a1, possibly after some learn-
ing. Moreover, even given some learning, it is not
optimal to choose a2, regardless of the realized sample,
as explained in discussion of Theorem 1. Under ex ante
indifference, Lemma 1 implies that τ∗ > 0 in (a.ii).
Combined with (a.i), we see that if there is ex ante
indifference between a0 and a1, then a2 is chosen if
and only if there is no learning, thus generalizing the
result in the Ellsberg model. (The latter also assumes
u2 � 1

2 (u00 + u10), which we see here is not needed for
the preceding conclusion.)
Finally, consider (b), where the payoff to the un-

ambiguous action is so low that it would never be
chosen, regardless of prior beliefs and even in the
absence of the option to learn. The optimal strategy is
similar to that in (a.ii) in form and interpretation—only
the critical values may differ to reflect the different
assumptions about payoffs. Another comment about
(b) is that whenm0 � m0, then π � π and equations (33)
defining the critical values r̃R and r̃l become

l r̃R
( )

− l r̃l
( )

� u11 − u10 + u00 − u01
ĉ

,

l̃ r̃R
( )

− l̃ r̃l
( )

� u00 − u10
ĉ

,

which are equations (21.1.14) and (21.1.15) in Peskir
and Shiryaev (2006).
Proof of the theorem is provided in the e-companion.

Here, we comment briefly on the proof strategy.
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The strategy is to: (1) guess the P∗ in 30 that is the
worst-case scenario; (2) solve the classical optimal stop-
ping problem given the single prior P∗ by applying the
techniques of Peskir and Shiryaev (2006, chapter 6) and
El Karoui et al. (1997, theorems 8.5, 8.6); (3) show that
the value function derived in (2) is also the value function
for our problem (9); and (4) use the value function to
derive τ∗.

The intuition for the conjectured P∗ was given in
Section 3.2 for the Ellsberg context. In this more general
context, it extends to the conjecture that P∗ shouldmake
P∗({dZt > 0} |Zt > z̃t) and P∗({dZt < 0} |Zt < z̃t) as small
as possible, by using mt when Zt > z̃t and mt when
Zt < z̃t. (See EC.1 in the e-companion for the precise
definition of P∗.) The search for the value function v
begins with the Hamilton–Jacobi–Bellman equation,
which yields its functional form up to some constants to
be determined by smooth contact conditions between v
and the payoff function X (see Peskir and Shiryaev
2006 for this free-boundary approach to analyzing
optimal stopping problems). A new ingredient relative
to existing models stems from the nature of P∗, specif-
ically from the fact that the relevant posterior proba-
bility at t switches between mt and mt as described,
implying that the form of the value function differs
between the regions Zt > z̃t and Zt < z̃t. Thus, in ad-
dition to ensuring a smooth contact at stopping points,
one must also be concerned with the smooth connec-
tion at z̃t.

We elaborate on the latter point in order to highlight
the technical novelty that arises from ambiguity. For
concreteness, consider (a.ii), where a2 is never chosen.
Let y denote a posterior probability, computed by using
m0 or m0, depending on the subdomain, and let VR(y) :
[π,1]→ [0,+∞) and Vl(y) : [0,π]→ [0,+∞) denote cor-
responding candidates for the value in the indicated
regions. Then, the variational inequality and smooth
contacts lead to the following free-boundary differ-
ential equation, in which rR ∈ (π,1] and rl ∈ [0,π) are
also unknowns to be determined:

VR
yy y
( ) � ĉ 1

y2 1−y( )2 , y ∈ π, rR
( )

VR rR
( ) � u11 − u10( )rR + u10

VR
y rR
( ) � u11 − u10( )

Vl
yy y
( ) � ĉ 1

y2 1−y( )2 , y ∈ rl, π
( )

Vl rl
( ) � −(u00 − u01)rl + u00

Vl
y rl
( ) � −(u00 − u01),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(39)

and the (new) smooth contact conditions due to am-
biguity (π < π):

VR(π) � Vl(π),
VR

y (π) � Vl
y(π).

{
(40)

In (a.ii), payoff symmetry leads to the simplification
VR

y (π) � Vl
y(π) � 0, which leads to (32) becoming two

separated equations. However, in (b), the connection
is not trivial.
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